Sequences and Series: Sum of 1s
|
|
Sum of 1 n times
rth term: 1
|
= |
1 + 1 + 1 + 1 + … + 1 |
n |
||||
= |
n |
Derivation of the Formula
|
= |
1 + 1 + 1 + 1 + … + 1 |
||||
= |
n × 1 |
|||||
= |
n |
Proof by Induction
|
= |
n |
Check that the formula is correct when n = 1
LHS: |
|
= |
1 |
||||
RHS: |
n |
= |
1 |
Assume that the formula is true for n = k
|
= |
|
+ 1 |
||||||||
= |
k |
+ 1 |
= |
(k + 1) |
If the formula is true for n = k then it is also true for n = (k + 1)
If the formula is true for n = k then it is true for n = (k + 1) and as it is true for n = 1, then by using mathematical induction the statement is true for all positive integers
|
|
Sum of the first n natural numbers
rth term: r
|
= |
1 + 2 + 3 + 4 + … + n |
||||
= |
|
Derivation of the Formula
Let S |
= |
|
||||
S |
= |
1 + 2 + 3 + … + (n-2) + (n-1) + n |
||||
S |
= |
n + (n-1) + (n-2) + … + 3 + 2 + 1 |
||||
2S |
= |
[1 + n] + [2 + (n-1)] + [3 + (n-2)] + … + [(n-2) + 3] + [(n-1) + 2] + [n + 1] |
||||
= |
n × (n + 1) |
|||||
S |
= |
|
Proof by Induction
The formula for the sum of the first n natural number
|
= |
|
Check that the formula is correct when n = 1
LHS: |
|
= |
1 |
||||
RHS: |
|
= |
1 |
Assume that the formula is true for n = k
|
= |
|
+ (k+1) |
||||||||
= |
|
+ (k+1) |
|||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
If the formula is true for n = k then it is also true for n = (k + 1)
If the formula is true for n = k then it is true for n = (k + 1) and as it is true for n = 1, then by using mathematical induction the statement is true for all positive integers
|
|
Sum of the first n square numbers
rth term: r2
|
= |
1 + 4 + 9 + 16 + … + n2 |
||||
= |
|
Derivation of the Formula
Let S = |
|
|
= |
(23 - 13) + (33 - 23) + … + (n3 - (n-1)3) + ((n+1)3 - n3) |
||||
= |
(n+1)3 - 1 |
|||||
= |
n3 + 3n2 + 3n |
|
= |
|
||||||||||
= |
3S + |
|
+ n |
|||||||||
= |
3S + |
|
||||||||||
n3 + 3n2 + 3n |
= |
3S + |
|
|||||||||
2n3 + 6n2 + 6n |
= |
6S + 3n2 + 5n |
||||||||||
6S |
= |
2n3 + 6n2 + 6n - 3n2 - 5n |
||
= |
2n3 + 3n2 + n |
|||
= |
n(n+1)(2n+1) |
|||
S |
= |
|
Proof by Induction
The formula for the sum of the first n squares number
|
= |
|
Check that the formula is correct when n = 1
LHS: |
|
= |
1 |
||||
RHS: |
n |
= |
1 |
Assume that the formula is true for n = k
|
= |
|
+ (k+1)2 |
||||||||
= |
|
+ (k+1)2 |
|||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
If the formula is true for n = k then it is also true for n = (k + 1)
If the formula is true for n = k then it is true for n = (k + 1) and as it is true for n = 1, then by using mathematical induction, the formula is true for all positive integers
|
|
Sum of the first n cubic numbers
rth term: r3
|
= |
1 + 8 + 27 + 64 + … + n3 |
||||
= |
|
Derivation of the Formula
Let S = |
|
|
= (24 - 14) + (34 - 24) + … + (n4 - (n-1)4) + ((n+1)4 - n4) |
||||
= (n+1)4 - 1 |
|||||
= n4 + 4n3 + 6n2 + 4n |
|
= |
|
||||||||||
= |
4S + |
|
+ |
|
+ n |
|||||||
= |
4S + n(n+1)(2n+1) + 2n(n+1) + n |
|||||||||||
= |
4S + 2n3 + 5n2 + 4n |
|||||||||||
n4 + 4n3 + 6n2 + 4n |
= |
4S + 2n3 + 5n2 + 4n |
||||||||||
4S |
= |
n4 + 2n3 + n2 |
||
= |
n2(n + 1)2 |
|||
S |
= |
|
Proof by Induction
The formula for the sum of the first n cubic number
|
= |
|
Check that the formula is correct when n = 1
LHS: |
|
= |
1 |
||||
RHS: |
n |
= |
1 |
Assume that the formula is true for n = k
|
= |
|
+ (k+1)2 |
||||||||
= |
|
+ (k+1)3 |
|||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
= |
|
||||||||||
If the formula is true for n = k then it is also true for n = (k+1)
If the formula is true for n = k then it is true for n = (k + 1) and as it is true for n = 1, then by using mathematical induction, the formula is true for all positive integers
|
|
Sums of Polynomials
|
= |
|
||||||
= |
|
| Sum of 1 n times |
|
= |
n |
||||||
Sum of the first n numbers |
|
= |
|
||||||
Sum of the first n square numbers |
|
= |
|
||||||
Sum of the first n cube numbers |
|
= |
|
|
= |
| + |
| + |
| + |
| |||||||||||||||||||||
= |
| + |
| + |
| + | n | ||||||||||||||||||||||
= |
|
||||||||||||||||||||||||||||
= |
|
||||||||||||||||||||||||||||
