Square Numbers: Square Numbers
|
|
Square numbers
A number is a perfect square if it is the result of multiplying an integer (n) by itself. (n × n or n2)
List of square numbers
1
4 9 16 25 36 49 64 81 100
Sum of odd numbers
n2 is the sum of the first n odd numbers.
| 1 | 2 | 5 | 10 | 17 | 26 | 37 | 50 | 65 | 82 | 1 = 1 |
|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 3 | 6 | 11 | 18 | 27 | 38 | 51 | 66 | 83 | 4 = 1 + 3 |
| 9 | 8 | 7 | 12 | 19 | 28 | 39 | 52 | 67 | 84 | 9 = 1 + 3 + 5 |
| 16 | 15 | 14 | 13 | 20 | 29 | 40 | 53 | 68 | 85 | 16 = 1 + 3 + 5 + 7 |
| 25 | 24 | 23 | 22 | 21 | 30 | 41 | 54 | 69 | 86 | 25 = 1 + 3 + 5 + 7 + 9 |
| 36 | 35 | 34 | 33 | 32 | 31 | 42 | 55 | 70 | 87 | 36 = 1 + 3 + 5 + 7 + 9 + 11 |
| 49 | 48 | 47 | 46 | 45 | 44 | 43 | 56 | 71 | 88 | 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13 |
| 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 72 | 89 | 64 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 |
| 81 | 80 | 79 | 78 | 77 | 76 | 75 | 74 | 73 | 90 | 81 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 |
| 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 100 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 |
Square number properties
Last digit
The last digit of a square number must be 0, 1, 4, 6 or 9
Difference of two squares
a2 - b2 = (a - b)(a + b)
Sum of the first n square numbers
|
= |
|
Sum of the first n odd numbers
|
= |
n(n+1) - n = n2 |
The product of four consquetive positive integers is square
n(n+1)(n+2)(n+3) + 1 = (n2 + 3n + 1)2
1 × 2 × 3 × 4 + 1 = 52
2 × 3 × 4 × 5 + 1 = 112
3 × 4 × 5 × 6 + 1 = 192
4 × 5 × 6 × 7 + 1 = 292
5 × 6 × 7 × 8 + 1 = 412
6 × 7 × 8 × 9 + 1 = 552
7 × 8 × 9 × 10 + 1 = 712
8 × 9 × 10 × 11 + 1 = 892
9 × 10 × 11 × 12 + 1 = 1092
|
|
Pythagoras's Theorem
For any right-angled triangle, The square of the length of the hypotenuse is equal to the sum of the squares of the other two sides.
Pythagorean triplets
- If two of the sides of a triangle have integer values, and using Pythagoras's theorem, the resulting third side is also have an integer value, then the lengths of the three sides form a Pythagorean triplet
- The triplet consist of three positive integers a, b and c such that a2 + b2 = c2
List of Pythagorean triplets: a2 + b2 = c2
This tool finds all of the differnet Pythagorean triplets for the value of c between a given range of values
List of Pythagorean triplets: (a,b,c)
(3,4,5) |
32 + 42 = 52 |
(6,8,10) |
62 + 82 = 102 |
(5,12,13) |
52 + 122 = 132 |
(9,12,15) |
92 + 122 = 152 |
(8,15,17) |
82 + 152 = 172 |
(12,16,20) |
122 + 162 = 202 |
(15,20,25) |
152 + 202 = 252 |
(7,24,25) |
72 + 242 = 252 |
(10,24,26) |
102 + 242 = 262 |
(20,21,29) |
202 + 212 = 292 |
(18,24,30) |
182 + 242 = 302 |
(16,30,34) |
162 + 302 = 342 |
(21,28,35) |
212 + 282 = 352 |
(12,35,37) |
122 + 352 = 372 |
(15,36,39) |
152 + 362 = 392 |
(24,32,40) |
242 + 322 = 402 |
(9,40,41) |
92 + 402 = 412 |
(27,36,45) |
272 + 362 = 452 |
(30,40,50) |
302 + 402 = 502 |
(14,48,50) |
142 + 482 = 502 |
(24,45,51) |
242 + 452 = 512 |
(20,48,52) |
202 + 482 = 522 |
(28,45,53) |
282 + 452 = 532 |
(33,44,55) |
332 + 442 = 552 |
(40,42,58) |
402 + 422 = 582 |
(36,48,60) |
362 + 482 = 602 |
(11,60,61) |
112 + 602 = 612 |
(39,52,65) |
392 + 522 = 652 |
(33,56,65) |
332 + 562 = 652 |
(25,60,65) |
252 + 602 = 652 |
(16,63,65) |
162 + 632 = 652 |
(32,60,68) |
322 + 602 = 682 |
(42,56,70) |
422 + 562 = 702 |
(48,55,73) |
482 + 552 = 732 |
(24,70,74) |
242 + 702 = 742 |
(45,60,75) |
452 + 602 = 752 |
(21,72,75) |
212 + 722 = 752 |
(30,72,78) |
302 + 722 = 782 |
(48,64,80) |
482 + 642 = 802 |
(18,80,82) |
182 + 802 = 822 |
(51,68,85) |
512 + 682 = 852 |
(40,75,85) |
402 + 752 = 852 |
(36,77,85) |
362 + 772 = 852 |
(13,84,85) |
132 + 842 = 852 |
(60,63,87) |
602 + 632 = 872 |
(39,80,89) |
392 + 802 = 892 |
(54,72,90) |
542 + 722 = 902 |
(35,84,91) |
352 + 842 = 912 |
(57,76,95) |
572 + 762 = 952 |
(65,72,97) |
652 + 722 = 972 |
Triplets where c is prime
(3,4,5) |
32 + 42 = 52 |
(5,12,13) |
52 + 122 = 132 |
(8,15,17) |
82 + 152 = 172 |
(20,21,29) |
202 + 212 = 292 |
(12,35,37) |
122 + 352 = 372 |
(9,40,41) |
92 + 402 = 412 |
(28,45,53) |
282 + 452 = 532 |
(11,60,61) |
112 + 602 = 612 |
(48,55,73) |
482 + 552 = 732 |
(39,80,89) |
392 + 802 = 892 |
(65,72,97) |
652 + 722 = 972 |
Triplets where a is odd and a = n, b = (n2 - 1)/2 and c = (n2 +1)/2,
(3,4,5) |
32 + 42 = 52 |
(5,12,13) |
52 + 122 = 132 |
(7,24,25) |
72 + 242 = 252 |
(9,40,41) |
92 + 402 = 412 |
(11,60,61) |
112 + 602 = 612 |
(13,84,85) |
132 + 842 = 852 |
Triplets where a is even and a = 2n, b = n2+1 and c = n2+1
(4,3,5) |
42 + 32 = 52 |
(6,8,10) |
62 + 82 = 102 |
(8,15,17) |
82 + 152 = 172 |
(10,24,26) |
102 + 242 = 262 |
(12,35,37) |
122 + 352 = 372 |
(14,48,50) |
142 + 482 = 502 |
(16,63,65) |
162 + 632 = 652 |
(18,80,82) |
182 + 802 = 822 |
No paired triplets or triplets with a GCF greater than 1
(20,21,29) |
202 + 212 = 292 |
(28,45,53) |
282 + 452 = 532 |
(33,56,65) |
332 + 562 = 652 |
(48,55,73) |
482 + 552 = 732 |
(36,77,85) |
362 + 772 = 852 |
(39,80,89) |
392 + 802 = 892 |
(65,72,97) |
652 + 722 = 972 |
