Modulo Maths Calculator: modulus 2


Enter a modulus:



 


Workings for:


Log

Operations

Modulo Maths

Modulo Operation

The modulo operation returns the remainder when an integer is divided by another integer

Consider a (mod n) and b (mod n)

  • a, b and n must be integers
  • a mod n returns a value between 0 and (n-1)

Modulo Operation Example

  • 19 mod 4 = 3 (19/4 = 4 remainder 3)
  • 55 mod 17 = 4 (55 = 3 × 17 + 4)
Calculations using the Modulo Operation

Addition and Multiplication can be simplified by applying the modulo operation to each value in the calculation, and then again to the result.

  • (a + b) mod n = (a mod n + b mod n) mod n
  • (a × b) mod n = (a mod n × b mod n) mod n

Calculating ar can be simplified by applying the modulo operation to a and/or to factors of ar

  • ar mod n = (a mod n)r mod n
  • apq mod n = (ap mod n × aq mod n) mod n
Modulo Calculations Examples
  1. (8 + 19) mod 5 = (8 mod 5 + 19 mod 5) mod 5
    = (3 + 4) mod 5
    = 7 mod 5
    = 2
  2. (8 × 19) mod 5 = (8 mod 5 × 19 mod 5) mod 5
    = (3 × 4) mod 5
    = 12 mod 5
    = 2
  3. 86 mod 5 = (8 mod 5)6 mod 5
    = 36 (mod 5)
    = 729 (mod 5)
    = 4
  4. 741 mod 5 = (7 mod 5)41 mod 5
    = 241 mod 5
    = ((24)10 × 2) mod 5
    = ((16 mod 5)10 × 2) mod 5
    = (110 × 2) mod 5
    = 2 mod 5 = 2
Modulo Congruence

Two numbers x and y are congruent for a given modulus n, when:

  • a mod n = b mod n

Congruence is written using the equivalence sign: ≡

  • a ≡ b (mod n)