Maths and Computing:

menu
Home
Mathematics
Binary
Computing
Coding
Books

Truth Tables

Truth Tables: Two Variables





Expression

Boolean Expression

Logical Notiotion


Boolean Expression

Output

0 0 0 0

A B
0 0
0 1
1 0
1 1


Boolean Expression

Truth Table

A B
0 0
0 1
1 0
1 1





Expression

Boolean Expression

Logical Notiotion


Boolean Expression

Output

0 0 0 0 0 0 0 0

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


Boolean Expression

Truth Table

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1





Expression

Boolean Expression

Logical Notiotion


Boolean Expression

Output

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


Boolean Expression

Truth Table

A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


A AND B

Boolean Expression

A · B

Logical Notiotion

A ∧ B

A B A · B
0 0 0
0 1 0
1 0 0
1 1 1


A OR B

Boolean Expression

A + B

Logical Notiotion

A ∨ B

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1


A XOR B

Boolean Expression

A ⊕ B

Logical Notiotion

A ⊻ B

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0


NOT A

Boolean Expression

~ A

Logical Notiotion

¬ A

A ~ A
0 1
1 0

Contents Copyright 2025 Andy Abraham
Please email comments to info@mathsandcomputing.co.uk